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ABSTRACT 
Multi-agent systems are an attractive approach to modeling 
systems of interacting entities, but in some cases mathematical 
models of these systems can offer complementary benefits. We 
report a case study of how the two modeling methods can 
profitably engage one another. The system we study [12] is an 
agent-based simulation of how groups of interacting entities can 
come to think alike. Though formal analysis of most of the models 
in that paper is intractable, a mean field analysis can be performed 
for the simplest case. On the one hand, while the formal analysis 
captures some of the basic features of that model, other features 
remain analytically elusive, reinforcing the benefits of agent-
based over equation-based modeling. On the other hand, the 
mathematical analysis draws our attention to certain interesting 
features of the model that we might not have considered if we had 
not performed it. Responsible modeling of a domain should 
include both approaches. 

Categories and Subject Descriptors 
I.2.11 [Distributed Artificial Intelligence]: Multiagent systems; 
I.6.1 [Simulation Theory]: Types of Simulation 

General Terms 
Measurement, Experimentation, Theory. 

Keywords 
Agent-based simulation, Equation-based modeling, Collective 
Cognitive Convergence, Mean field analysis. 

1. INTRODUCTION 
Formal, closed-form models of dynamical systems are attractive 
for a number of reasons. 

• Their formulation requires the researcher to explicate the 
underlying processes in a way that construction of an agent-
based model does not. They thus provide an account of the 
system that can be extrapolated more reliably than one or a 
few runs of an agent-based simulation. 

• They provide a rigorous structure that can be related to a 
large body of mathematical theory (notably in nonlinear 
systems [9] and probability theory [6]), allowing 
generalizations that would be difficult to justify working 
solely from a simulation.  

• Evaluation of a set of equations is usually much more 
efficient computationally than running an agent-based model. 
When the objective of a model is to deliver results, equations 
can often deliver them faster. 

• Perhaps most importantly, development of such a model 
draws attention to features of the system that might otherwise 
be overlooked, and that repay attention even in the agent-
based form 

But equation-based models are useful only if they indeed describe 
the same system as the simulation. Inevitably, formal models must 
make simplifications that are naturally avoided in the agent-based 
case. These simplifications often take the form of working with 
aggregate or average quantities instead of individual ones. In such 
cases the analysis is described as a “mean-field theory.” 
Sometimes the aggregation is over the agent population, while at 
other times it may be over the environment in which the agents 
interact. Because of the nonlinearity of agent interaction, the 
individual agent differences can lead to qualitatively different 
performance in an agent-based model from what is seen in a 
mean-field analysis. 

The purpose of this paper is to demonstrate the interplay of 
analysis and simulation in studying a simple system, and thus to 
argue for the importance of pursuing both approaches 
concurrently. Our moral is that while a multi-agent model is more 
likely to be right in detail, an analytical model is likely to lend 
deeper insight to what is going on, and by developing both 
together, researchers can realize benefits that neither approach by 
itself can deliver. 

We focus our attention on a system we presented at AAMAS 
2008 [12]. People who work together frequently tend to adopt 
similar beliefs, and sometimes become blind to positions not 
represented in their group. This tendency has long been 
recognized empirically (e.g., [15]). The previous paper used a 
simple multi-agent model to study this dynamic, which we termed 
“Collective Cognitive Convergence” (CCC), but offered no 
formal analysis of the system. We argued, based on other research 
in the field, that such an analysis was likely to be intractable. In 
general, that claim is correct, but we can develop a formal model 
of a very simple form of that system. Even that simple version can 
demonstrate the interaction between the two models. 

Section 2 reports previous work in comparing agent-based and 
equation-based system modeling, and describes the original CCC 
system. Section 3 develops our model. Section 4 compares its 
behavior with that of the CCC system. Section 5 concludes. 
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2. PREVIOUS WORK 
Relevant previous work falls in three categories: the general 
debate concerning the relative virtues of agent-oriented and 
equation-based models, previous comparisons of the two kinds of 
models of the same system, and models of cognitive convergence, 
including the CCC model. 

2.1 Equations vs. Agents 
Equations and Agents have often been viewed as competing 
technologies for modeling systems. Epstein [5] argues against the 
widespread use of equation-based analyses of equilibrium 
conditions in the social sciences with the observation that a model 
must show how an equilibrium is reached, not just that it would be 
stable if reached. His motto is, “If you didn’t grow it, you didn’t 
explain it.” Agent-based models are his tool of choice for 
generating social phenomena, though the formal model we 
propose in this paper is generative as well. For those who insist on 
a mathematical model, Epstein points out that any computer 
system corresponds to a unique equivalent recursive (partial) 
function, but such a function is unlikely to offer the clarity of 
understanding that usually motivates the equation-based modeler. 

2.2 Equations and Agents 
The point of this study is that it can be helpful to study the same 
system both analytically and using agent-based modeling. This is 
not the first such effort. Axtell et al. [2] emphasize the importance 
of applying multiple modeling disciplines to the same problem, a 
technique they describe as model “docking.”  

There have been other examples of docking equation-based and 
agent-based models. Parunak et al. [13] discuss the relation 
between an agent-based and an equation-based analysis of an 
industrial supply chain. Wilson [18] compares two models of the 
same ecosystem and shows how successive refinements of the 
equation-based model are needed to match it with the agent-based 
model. Shnerb [14] presents an abstract predator-prey system that 
exhibits qualitatively different behavior when modeled using 
differential equations and agents. In each of these cases, the 
comparison identifies unwarranted assumptions made in the 
equation-based model that lead to differences in behavior. 
Shnerb’s model is particularly relevant to our effort here, because 
it highlights the distinction between the use of aggregate or 
average quantities in an equation-based model and the 
idiosyncratic behavior of individually divergent agents in an 
agent-based model. 

Our current effort is of interest because the problem is much more 
complex than those that have been handled previously, and as a 
result the simplifications needed in the mathematical model 
become more salient.  

2.3 Collective Cognitive Convergence 
This section relies heavily on material in [12]. 

2.3.1 The General Field 
The question of how different agents converge on a common 
cognitive state is one of the foundational issues of MAS research, 
and has been studied under a number of names, including multi-
agent agreement, convergence, collective agreement, convention, 
consensus, and game-theoretic equilibrium, and a variety of 
mathematical techniques have been employed to formalize them. 
For example, for agents with predefined (static or dynamic) 
connections to one another, spectral analysis of the Laplacian 
matrix describing their connectivity is a natural way to study how 

local agreements spread to form global consensus, and Lyapunov 
stability analysis has been applied successfully to study the 
convergence of such systems [11].1 Such analysis is particularly 
natural in exploring the dynamics of artificial agents, whose 
connectivity is usually engineered explicitly as part of the 
systems, and thus available for graph-theoretic analysis. 

Our approach is motivated more by the need to understand the 
dynamics of populations of humans, whose connectivity is not 
readily accessible for analysis, and emerges from the consensus 
process rather than driving it. Empirically, groups of people who 
interact regularly with one another tend to converge cognitively. 
For more than 50 years [7], computational social science has been 
preoccupied with the dynamics of consensus formation [8]. Some 
studies are analytic, while others use simulation. They differ in the 
belief model and three characteristics of agent interaction 
(topology, arity, and preference). The CCC model, which we 
follow, represents a unique combination of these characteristics. 
In particular, 

• CCC considers a vector V of m topics, rather than a single one. 
This model lets an agent participate in different interest groups, 
but greatly complicates the dynamics. With one topic, 
individuals move along a line, and measures such as the mean 
and variance of their position summarize the system’s state. In 
CCC, they live on the Boolean lattice {0,1}m of interests, and 
our measures must reflect the structure of this lattice.  

• CCC allows many agents to interact concurrently. This model 
captures group interaction more accurately than does pairwise 
interaction, but also means that agents interact with a 
distribution over belief vectors rather than a single selection 
from such a distribution. 

• CCC allows agents to modulate the likelihood of interaction 
based on how similar they are to their interaction partners. This 
kind of interest-based selection is critical to the dynamics of 
interest to us, but makes the system much more complex. 

CCC thus takes the more complicated options along these 
dimensions. Even among previous work with simpler assumptions 
(e.g., [1, 3, 4, 10, 16]), analytic results are not always offered, and 
the original CCC work makes no attempt to analyze the more 
complicated system they present.  

2.3.2 The CCC Model [12] 
The original model represents the topics in which each agent can 
have an interest as V ∈ {0,1}m. A ‘1’ at a position indicates 
interest in that topic, while a ‘0’ indicates a lack of interest. At 
each step, a randomly chosen agent (the “active agent”) 

• identifies a neighborhood of other agents based on some criteria 
(e.g., proximity between interest vectors, geographical 
proximity, or proximity in a social network), in the original 
work, using the Jaccard distance, 

• either learns from this neighborhood (by picking interest j at 
random, and if it is 0, setting it to 1 with probability pj = 
proportion of neighbors with j = 1), or with equal probability,  

• forgets (by turning off an interest j currently at 1 to 0 with 
probability 1 – pj). 

To measure a society’s convergence, the original model performs 
single-linkage hierarchical clustering of the population based on 

                                                                 
1 I am indebted to an anonymous reviewer for emphasizing this 

useful perspective. 
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the Jaccard distance between interest vectors, and measures each 
node’s diameter d, the distance at which it forms in the 
cladogram. In a random population, d of lower-level nodes is not 
much less than the root’s d; in highly converged populations, 
lower-level nodes have d much less the root’s. The ratio of a 
node’s d to the root’s is the node’s “min-max ratio” (M2R). The 
median of this ratio (M3R) measures system convergence.  

2.3.3 Results 
Our dominant conclusion in [12] is that collapse of the community 
to a single set of interests is robust under a wide range of 
neighborhood formation rules. These include neighborhoods of 
fixed size made up of the closest neighbors to the active agent, 
neighborhoods of variable size made up of all agents within a 
threshold distance to the active agent, the complete population of 
agents, and randomly formed neighborhoods. Three mechanisms 
were shown to avoid collapse: random mutations in individual 
agents’ interest strings, agents that regularly adopt and forget 
interests that are the opposite of their neighbors’ tendencies, and 
pre-formed groups that tend to converge individually to different 
points, but continually cross-pollinate other groups through bridge 
agents that belong to multiple communities. 

3. AN ANALYTICAL MODEL 
In this section, we introduce the structure of our model and derive 
two non-obvious features: conservation of interests and 
convergence behavior. Then we refine the model and examine the 
effect of the refinement on our conclusions.  

3.1 Model Structure 
Let there be n agents, each with an m bit string representing its 
interest in m possible topics. We analyze the case where all agents 
interact as a group (the neighborhood consists of the entire 
population). As a consequence, we never need to reason about the 
distance between agents, so the choice of the Jaccard distance in 
the original paper has no effect. We note in passing, however, that 
the normalized Hamming distance is a much more appropriate 
way to estimate the separation of agents. The Hamming distance 
is the number of positions in two agents’ bit strings at which they 
differ, and the normalized Hamming distance divides this number 
by the length of the string. This measure, unlike the Jaccard, gives 
equal weight to agreement between two agents at a given bit 
position, whether they agree on 1 or on 0.  

Let αi is the ith agent, and αij the jth position in the ith agent. Thus 
αij can be viewed as a matrix, whose rows are agents and whose 
columns are topics. 

Let πi(t) be the density of 1 bits for agent i,  . Let 

π(t) be the average of this value over all agents. For clarity, we 
omit the time when we are discussing the situation at a fixed time. 
To keep our model tractable, we do not track the individual 
evolution of πi, but work with π. This simplification is an example 
of the “mean-field” approach. The probability that an agent has a 
given interest is p1 = π and the probability that it does not have 
that interest is p0 = (1 - π). 

3.2 Conservation of Interests 
The critical decision variable that determines whether an agent 
flips a bit or not when it is activated is the probability of that bit’s 
status in its neighborhood (the set of other agents with which the 
active agent is comparing itself). This quantity is attractive as the 
focal point for a formal theory, because it can be analyzed with a 
large existing body of probability theory. Thus the formal 

modeling process draws our attention to a feature of the original 
model that affords analytical traction. The dynamics of this 
feature were not discussed in the original study. One contribution 
of the formal model will be to draw our attention to this feature 
and examine its behavior in the agent-based model. At the same 
time, we recognize that we are choosing our focal variable based 
on analytical tractability, not necessarily relevance to the domain 
under study, and this is a weakness of the analytic approach. 

Consider the probability that the bit is on in the active agent. The 
state of the bit in each agent in the neighborhood is a Bernouilli 
trial of this event with probability π, so the expected number of 
agents with the bit on is just nπ, and the probability that the bit is 
on is just π. Similarly, the probability of finding the bit off in the 
neighborhood is (1 - π). In other words, in the αij matrix, the 
expected probabilities of 1 or 0 in each column are the same as the 
probabilities in each row.2 

When an agent selects a bit, it will reverse its state in two cases. In 
one case, the agent finds the bit on with probability π, and turns it 
off with probability equal to the probability that the neighborhood 
has it off, which is (1 - π). Thus the probability of a shift from 1 to 
0 is p10 = π (1 - π). In the other case, the agent finds the bit off 
with probability (1 - π), and turns it on with probability that the 
neighborhood has it on, which is just π, so p01 = (1 - π) π. The 
probability of a flip is the same in each direction, so π, the agent’s 
proportion of 1’s, on average, remains unchanged. There is a 
“conservation of interests”: the number of topics in which an 
agent is interested is constant, and the convergence process simply 
reallocates that interest to different topics. 

This result is a directly testable and non-obvious prediction of our 
theory. One way that a community could converge would be by 
developing interest vectors of all 1’s or all 0’s. Or convergence 
could lead to a vector with a balance of 1’s and 0’s, whatever the 
original proportion. The original paper does not engage this 
question, but a “conservation of interests” is an interesting 
characteristic of cognitive convergence, particularly since the 
system has no explicit representation of cognitive capacity. It is 
the theory that draws our attention to this emergent behavior. 

3.3 Convergence Time 
Each flip brings the population closer to unanimity of interest. 
How many trials does this require? The overall likelihood of a flip 
is p10 + p01 = 2π(1-π). This quadratic assumes its maximum value 
for π = 0.5, suggesting that the system should converge most 
rapidly at this value, and less rapidly at the extremes. But this 
tendency must be balanced by the observation that the 
community’s initial level of agreement will be much greater when 
π is far from 0.5. In the extreme case, when π is 0 or 1, though the 
probability of a flip is 0, the entire community is already in 
agreement, so the time to convergence is 0. 

Can we estimate this net convergence time analytically? The 
measure of group similarity in [12] is derived from the distances 
at which agents cluster in a hierarchical clustering. This measure 
is costly to compute and does not lend itself to analytical 
treatment. We suggest an alternative: the mutual information 

                                                                 
2 The reader may want to reflect on the oversimplification in this 

reasoning, which we will correct later. It is instructive to see 
how far we can go even with this oversimplification. 
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between topics and agents. The mutual information between two 
features (a, b) over a set of data is 

Equation 1 

 

In our case, b indexes over topics and a indexes over agents. 
p(b,a) is the probability that the ath agent is interested in the bth 
topic, while p(b) is the sum of this probability over all agents, and 
p(a) is the sum over all bit positions. Consider two cases. 

First, if all agents have the same interests, p(a) is independent of 
p(b). Then p(b,a) = p(a)p(b), and the logarithm (and thus MI) 
vanishes.  

Second, if each agent has a distinctive set of interests, p(b,a) will 
differ from p(a)p(b). Sometimes it will be less, sometimes more. 
When it is less, the logarithm will be negative, but will be 
weighted by a relatively small value of p(b,a). When it is more, 
the logarithm will be positive, and will be weighted by the larger 
p(b,a). The resulting MI will be greater than zero, with an upper 
bound equal to the lesser of log(m) and log(n). 

Thus MI is an easily computed measure of the degree of diversity 
in an agent population. 0 indicates that all agents have identical 
interests, while a higher value indicates divergence. 

We can estimate MI for a random matrix. There are mπ 1’s in 
each agent, or a total of nmπ over all n agents, so the probability 
of finding a 1 in any one cell out of mn is just π. Summing these 
values over rows gives p(b) = nπ/n = π and summing over 
columns gives p(a) = mπ/m = π. Neither is a function of a or b, so 
we can replace summation by multiplication, yielding MI = mnπ 
log(1/π). This value is maximum when π = 1/e ~ 0.37, to the left 
of 0.5, where convergence proceeds most rapidly (Figure 1).  

It is not straightforward to combine these two curves to show the 
net rate of convergence. They are not even in the same units. 
However, we can argue intuitively as follows. The slope of the MI 
curve reflects the rate at which diversity increases with π, while 
the slope of the other curve reflects the rate at which bit change 
frequency increases with π. Thus we might differentiate the two 
curves, subtract the second of the derivates from the first, and 
integrate to get a general idea of convergence time (or 
equivalently, subtract the quadratic curve from that for MI). 
Figure 2 shows the result of this computation. It has two features. 

First, convergence should be slower at intermediate values of π 
than at the extremes.  

Second, it suggests that convergence will be most rapid for 
extreme values of π, reaching a maximum somewhat to the left of 
π = 0.5, with a long tail toward higher probabilities. 

This latter prediction is anomalous. Why should convergence time 
be asymmetric around π = 0.5? Our algorithm treats agreement on 
0 the same as agreement on 1. We would expect convergence at 
0.1 to be the same as at 0.9. 

The asymmetry in Figure 2 is an artifact of the definition of MI, 
which does not treat a 1 in the matrix the same as a 0. All three of 
its component probabilities (p(b, a), p(a), and p(b)) are the 
probability of a 1 in the matrix, not of a 0. This asymmetry leads 
to the asymmetry of the peak in MI in Figure 1, which we use to 
estimate the initial degree of diversity in a random population, 
and which thus leads to the asymmetry in Figure 2. 

The original paper did not study the dependence of the system’s 
dynamics on different values of π. The theory focuses our 
attention on this quantity because of its tractability for existing 
mathematical (specifically, probabilistic) tools, and that in turn 
encourages us to look back at the multi-agent model to see 
whether the convergence does indeed follow this prediction. 

3.4 Column vs. Row Probabilities 
The careful reader will have noticed a weakness in the preceding 
development. The column (topic) probabilities in the αij matrix 
are the same as the row (agent) probability π only in the initial 
random matrix. As individual agents update bits to bring them 
more in line with the values of those positions (columns) in other 
agents (rows), the column probabilities will tend to diverge. The 
average column probability will continue to be π, but this average 
will not be representative of any individual column.  

Let π continue to denote the probability of 1 in an agent (a row of 
the matrix), which we will assume to be constant across agents as 
outlined above. Denote the probability of 1 in a predominantly 1 
column (topic) by π1, and in a predominantly 0 column by π0. We 
must now use p10=π(1-π1), and p01 = (1-π)π0. Each time an agent 
flips a bit, it will increase the number of 0’s or 1’s in the 
appropriate column by 1, and thus increase the relevant 
probability in that column by 1/n. On average, each flip will either 

 
Figure 1: Mutual Information (solid line) and probability of 
bit change (dashed line) as function of ππππ. MI is plotted for m = n 
= 1 to achieve scale comparable with probability Higher values of 
m and n simply multiply MI by a factor of mn.  

 

Figure 2: Nominal convergence time as function of ππππ 
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increase the probability of 1 in a predominantly 1 column by 
p01/n, or decrease the probability of a 1 in a predominantly 0 
column by p10/n.  

These changes affect only a single column. To estimate their 
impact without tracking all columns individually, we need to 
know how many columns are majority 0 and how many are 
majority 1. We focus on majority 1 columns; the analysis for the 
majority 0 columns is precisely parallel. As a run evolves, to 
maintain the constancy of π, the proportion of majority 1 columns 
will tend toward π, and in the spirit of ignoring initial transients 
(which equation-based models are notoriously bad at capturing), 
we assume this is constant. Then there are πm such columns. The 
addition of another 1 in one of them, which happens with 
probability p01, amounts to an average increase of probability of 
1/n in a single column, or of 1/πmn across all of the majority 1 
columns. Thus π1 begins at π and increases on average by p01/πmn 
each time an agent is activated. Similarly, π0 begins at 1 - π  and 
decreases by p10/(1-π)mn with each activation.. The resulting 
difference equations are 

Equation 2 

 

and 

Equation 3 

 

Equation 4 and Equation 5 are solutions to these equations, as the 
reader can show by evaluating the solutions at t + 1 and making 
use of the Taylor series approximation ex ≈ 1 + x for x << 1. The 
approximation is excellent; Figure 3 and Figure 4 show the 
evolution of π0 and π1, respectively, for π = 0.4, m = 10, and n = 
20, using Equation 2 and Equation 3. The dots are every fortieth 
point resulting from the iteration of the difference equations. The 
lines are the exponential solutions.  

Equation 4 

 

Equation 5 

 

Now we reevaluate our previous conclusions.  

First, is π still constant over time (as this development has 
assumed)? Consider p10 – p01, which was 0 under our previous 
assumptions. Now it is (using the exponential forms for π0 and π1) 

.

As in our simpler model, the difference vanishes. 

Second, how does the rate of convergence depend on π? Now we 
consider p10 + p01, which is 

 

At any time epoch, this quantity is quadratic in π, as before, and 
we expect the same qualitative convergence shown in Figure 2.  

4. COMPARISON OF BEHAVIORS 
We have modified our original system [12] in two ways.  

1. Instead of measuring convergence by clustering the agents 
and reporting distances in the cladogram, we use the MI 
measure described in the previous section. 

2. Instead of the Jaccard distance, we use the normalized 
Hamming distance to estimate the separation of agents. 
(However, when we are considering the neighborhood that 
consists of the entire agent population, and using MI rather 
than cladogram separation to measure convergence, neither 

 

Figure 3: Plot of Equation 2 and Exponential Solution 
 

Figure 4: Plot of Equation 3 and Exponential Solution 
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measure enters into the computation.) 

Our implementation gives qualitatively the same results over the 
full range of configurations as the original report. The 
experiments below use the same basic parameters as [12] (a 
population of 20 agents, each with an interest vector of length 10).  

4.1 Behavior of ππππ 
Our computational model predicts that π remains constant as the 
system evolved. Figure 5 shows the difference between final and 
initial π as a function of initial π for 30 runs at each value of π in 
{.1, .2, .3, …, .9}. The line shows equality. While there is 
considerable dispersion around the line, the variation is evenly 
distributed. Of the 270 runs in this set, 79 had the same initial and 
final π. In 93 cases the final π was larger than the initial one (by 
an average of 0.14), while in 98 cases it was smaller (by an 
average of 0.15).  

These results are consistent with the overall stability of π 
predicted by the formal model. However, that model does not 
account for the (considerable) variation in the agent-based model, 
and the structure in that variation evident in Figure 5 (for 
example, the much narrower variation at lower values of π, or the 
exceptionally high variation at π = 0.5).  

4.2 Topic Proportions 
Our theoretical development assumed, with acknowledged 
oversimplification, that the proportion of Majority 1 and Majority 
0 topics would remain constant at π and (1 - π), respectively. To 
test this, we consider a single run with initial π = 0.4.  

Figure 6 shows the evolution of π in this run. It quickly drops 
from 0.4 to 0.3, where it stabilizes briefly, then plunges to 0.1 
before finally settling at 0.2. As noted in the previous section, this 
variation is not inconsistent with the average tendency over many 
runs for π to remain constant, but this detailed behavior is 
inaccessible to our theory. 

Figure 7 shows the proportion of majority 1 topics at each 
iteration. (With rare exceptions when the two are equal, the 
proportion of majority 0 topics in this run is just 1 – the 
proportion of majority 1 topics.) After the system stabilizes, this 
proportion is equal to π, and it sometimes approaches it earlier 
(note 0.3 between iterations 80 and 100, and 0.2 around 150), but 
the approximate nature of the assumption is obvious. This may be 
due to the wide variation of π in this particular run, which in turn 
is due to the specifics of the starting configuration and the 

stochastic decisions made by the agents in the course of the 
system’s evolution. 

4.3 Topic Divergence 
The theory also predicted that while πI for individual agents 
would grow closer together, the percentage of 1’s in the majority 
1 and majority 0 columns would diverge. Figure 8 confirms this 
behavior. 

  

 

Figure 6: ππππ(t), single run starting at 0.4 

 
Figure 7: Proportion of Majority 1 Topics 

 

 
Figure 8: Variance of agent density (top) and topic density 
(bottom) 
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4.4 Rate of Convergence 
Equation 4 and Equation 5 are solutions to these equations, as the 
reader can show by evaluating the solutions at t + 1 and making 
use of the Taylor series approximation ex ≈ 1 + x for x << 1. The 
approximation is excellent; Figure 3 and Figure 4 show the 
evolution of π0 and π1, respectively, for π = 0.4, m = 10, and n = 
20, using Equation 2 and Equation 3. The dots are every fortieth 
point resulting from the iteration of the difference equations. The 
lines are the exponential solutions.  

Equation 4 and Equation 5 provide a 
concise description of how quickly a 
CCC system will converge. Figure 9 
shows the convergence of the majority 
1 and majority 0 bit positions over 
time in a single run. The exponential 
model is not unreasonable in the case 
of the majority 1 data, and quite good 
for majority 0, especially considering 
that this data is from a single run. 

This convergence model in turn gives 
us a way to calculate the appropriate 
amount of noise needed to prevent 
collapse. 

4.5 Shape of Convergence 
Our model predicts that convergence 
speed should depend on π roughly as 

shown in Figure 2. Figure 10 (top) shows the distribution of the 
iteration at which MI = 0 for 30 runs at each value of π. The 
distributions are plotted as box and whisker plots [17]. The box 
extends between the upper and lower quartiles of the data, and the 
whiskers span the entire range of data.  

This figure shows not only the concave shape suggested by Figure 
2, but also its asymmetry, which we explained as an artifact of the 
definition of MI. In Figure 10, MI is used to assess, not the initial 
diversity of the population (as in Figure 2), but the final 
convergence of a run (when it reaches 0). MI = 0 exactly when all 
agents have the same sets of interests. The intrinsic asymmetry of 
MI does not affect this condition. Yet populations that begin with 
π = 0.1 do converge much faster than those that begin with π = 
0.9, and the slowest convergence does appear to be around 0.3. 

As we have emphasized repeatedly, simulation results are subject 
to the wide variability of individual runs, and confirmation by 
independent runs is wise. Figure 10 (bottom) shows the 
distribution of convergence times for another set of 30 runs. 
Again, the general shape of the dependency on π is concave, but 
the appearance of asymmetry is much weaker.  

Clearly, the dependence of convergence time on π merits further 
study.  

5. CONCLUSION 
Multi-agent systems and closed-form mathematical analysis are 
both valuable tools for modeling systems of interacting entities. 
Practitioners of both approaches should be conscious of the 
benefits of “docking” them [2] by applying them both to a single 
domain. Each class of model informs the other. The process is 
invisible in a final report such as this paper, but at innumerable 
points, observation of the agent-based model’s behavior suggested 
directions for refinement of the mathematical model, while 
development of the mathematical model indicated experiments on 
the agent-based model to test the alignment between the two.  

Where a straightforward mathematical model is feasible, it can 
give much more insight than an agent-based model, and provide a 
firmer foundation for generalization that the agent-based system. 
However, the mean-field techniques required to achieve a concise 
mathematical formulation inevitably lose individual detail that the 
agent-based system provides in abundance. We summarize several 
examples of these two tendencies. 

First, the mathematical model gives concise, generalizable 

 

 
Figure 9: Convergence of mean density of majority 1 (top) and 
majority 0 (bottom) topics 

 

Figure 10: Distribution of time to convergence (MI = 0) for 30 runs at each value of ππππ 
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insights. In the present exercise, these include 

• The usefulness of the densities of the rows (agents) and 
columns (topics) of the interest matrix as focal variables for 
study; 

• The “conservation of topics,” in which agents maintain 
interest in a relatively fixed number of topics, even in the 
absence of any explicit constraints on their cognitive 
capacity; 

• An explicit form for the dependence of convergence time on 
π and the size of the interest matrix (m and n). 

Discovery of these from the agent-based model alone would have 
required extensive sweeps of parameter space, and even then 
would have yielded only approximate results with limited 
generalizability. In particular, the elegant form of Equation 4 and 
Equation 5 are solutions to these equations, as the reader can show 
by evaluating the solutions at t + 1 and making use of the Taylor 
series approximation ex ≈ 1 + x for x << 1. The approximation is 
excellent; Figure 3 and Figure 4 show the evolution of π0 and π1, 
respectively, for π = 0.4, m = 10, and n = 20, using Equation 2 and 
Equation 3. The dots are every fortieth point resulting from the 
iteration of the difference equations. The lines are the exponential 
solutions.  

Equation 4 and Equation 5 would be almost impossible to verify 
apart from formal analysis  

Second, the agent-based model shows a richness of behavior that 
the mean-field formalism is unable to capture. This richness 
includes 

• The dependence of the variability in final π on its initial 
value evident in Figure 5,  

• The behavior of the proportion of majority 1 and majority 0 
topics as the system evolves,  

• The dependence of system convergence time on initial π 
(Figure 10). The theory could only hint at the shape of the 
convergence curve by vague hand-waving. 

Agent-based modeling is an invaluable tool for studying complex 
systems. It will reach its full potential only when it is used as part 
of a complete toolbox that includes other approaches, such as 
equation-based models. These different approaches should be 
considered as complements to one another, and not competitors.  
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